Các kiểu bức xạ Phổ_điện_từ

Phổ điện từ

Các kiểu bức xạ điện từ được sắp xếp thành các lớp sau:[2]

Bảng phân chia các bức xạ sóng điện từ/ánh sáng[10]
TênBước sóngTần số (Hz)Năng lượng photon (eV)
Tia gamma≤ 0,01 nm≥ 30 EHz124 keV - 300+ GeV
Tia X0,01 nm - 10 nm30 EHz - 30 PHz124 eV - 124 keV
Tia tử ngoại10 nm - 380 nm30 PHz - 790 THz3.3 eV - 124 eV
Ánh sáng nhìn thấy380 nm-700 nm790 THz - 430 THz1.7 eV - 3.3 eV
Tia hồng ngoại700 nm - 1 mm430 THz - 300 GHz1.24 meV - 1.7 eV
Vi ba1 mm - 1 met300 GHz - 300 MHz1.7 eV - 1.24 meV
Radio1 mm - 100000 km300 GHz - 3 Hz12.4 feV - 1.24 meV

Sự phân loại này theo thứ tự tăng dần của bước sóng, đó là đặc trưng của kiểu bức xạ.[2] Trong khi đó nói chung, điểu đồ phân loại là chính xác, trong thực tế thường có một số chồng chéo giữa các kiểu năng lượng điện từ lân cận. Ví dụ, sóng vô tuyến SLF ở tần số 60 Hz có thể thu được và nghiên cứu bởi các nhà thiên văn học, hoặc có thể đưa vào dây như dòng điện. Phân biệt tia X và tia gamma dựa vào nguồn bức xạ: tia gamma được tạo ra từ sự phân rã hạt nhân hoặc hạt nhân khác và các quá trìnhhạt/dưới hạt nhân, trong khi tia X được tạo bởi quá trình chuyển đổi điện tử liên quan đến các electron bên trong nguyên tử có năng lượng cao.[11][12][13] Nói chung, chuyển đổi hạtt nhân có nhiều năng lượng hơn chuyển đổi điện tử, tia gamma có nhiều năng lượng hơn tia X, nhưng có những trường hợp ngoại lệ vẫn tồn tại. Bằng cách tương tự với chuyển đổi điện tử, chuyển đổi hạt nhân ngoại lai cũng tạo ra tia X, dù năng lượng của chúng có thể vượt quá 6 mêga electronvôn (0,96 pJ),[14] trong khi nhiều chuyển đổi hạt nhân khác (77 chuyển đổi có năng lượng 10 keV (1,6 fJ)) lại có năng lượng thấp (ví dụ chuyển đổi hạt nhân của thorium-229 sinh ra năng lượng là 7,6 eV (1,22 aJ)[Chuyển đổi: Số không hợp lệ]) và năng lượng ít hơn 1 triệu lần so với tia X ngoại lai, các photon phát ra vẫn được gọi là tia gamma do nguồn gốc hạt nhân của chúng.[15]

Ngoài ra các vùng quang phổ của bức xạ điện từ cụ thể phụ thuộc hệ quy chiếu (do độ dịch Doppler đối với ánh sáng), nên bức xạ EM mà một quan sát nằm trong một vùng của quang phổ có thể xuất hiện tới một quan sát chuyển động với một phần đáng kể vận tốc ánh sáng đối với quan sát đầu tiên cũng là một phần khác của quang phổ. Ví dụ, hãy xem xét bức xạ phông vi sóng vũ trụ. Nó được tạo ra khi vật chất và bức xạ tách riêng, bằng cách kích thích nguyên tử hydro tới trạng thái cơ bản. Những photon từ chuyển đổi chuỗi Lyman, được đặt trong phần tia cực tím (UV) của phổ điện từ. Bây giờ bức xạ này đi qua đủ dịch chuyển đỏ vũ trụ để đưa nó vào vùng vi ba của quan phổ, rồi quan sát chuyển động chậm (so với vận tốc ánh sáng) đối với vũ trụ. Tuy nhiên, với các hạt chuyển động cận vận tốc ánh sáng, bức xạ này sẽ có chuyển dịch xanh trong phần còn lại. Các proton tia vũ trụ năng lượng cao nhất di chuyển như vậy, trong phần còn lại của hệ quy chiếu, bức xạ này được dịch chuyển xanh thành tia gamma năng lượng cao, tương tác với proton để tạo ra cặp ràng buộc quark-phản quark (pion). Đây là giới hạn GZK.

Tần số vô tuyến

Sóng vô tuyến thường dùng các anten có kích thước thích hợp (nguyên nguyên tắc cộng hướng), với bước sóng khác nhau, từ hàng trăm mét tới khoảng 1 mm. Chúng được dùng để truyền dữ liệu, qua điều chế. Truyền hình, điện thoại di động, mạng không dây và vô tuyến nghiệp dư đều dùng sóng vô tuyến. Việc dùng phổ vô tuyến được quy định bởi các chính phủ thông qua việc phân bổ tần số.

Sóng vô tuyến có thể được tạo ra để mang thông tin bằng cách thay đổi một sự kết hợp của biên độ, tần số và pha của sóng với một dải tần số. Khi bức xạ EM có tác động tới một dây dẫn, nó ghép thành cặp với dây dẫn, truyền đi cùng dây dẫn và gây ra một dòng điện cảm ứng trên bề mặt của dây dẫn đó bằng cách kích thích các điện tử của vật liệu dây dẫn. Hiệu ứng này được sử dụng trong các anten (hiệu ứng bề mặt).

Vi ba

Bài chi tiết: Vi ba
Hệ số truyền khí quyển Trái Đất (hay độ chắn) với các bước sóng khác nhau của bức xạ điện từ.

Tần số siêu cao (SHF) và tần số cực kỳ cao (EHF) của vi ba nằm phía sau sóng vô tuyến. Vi ba là sóng thường là ngắn để để sử dụng các ống dẫn sóng kim loại hình ống có đường kính hợp lý. Năng lượng vi ba được tạo ra với các đèn klystronmagnetron, và bằng điốt bán dẫn như các điốt GunnIMPATT. Vi ba được hấp thụ bởi các phân tử có mô-men lưỡng cực trong chất lỏng. Trong một số lò vi sóng, hiệu ứng này giúp cho thức ăn nóng lên. Bức xạ vi ba cường độ thấp dùng trong Wi-Fi.

Bức xạ terahertz

Bài chi tiết: Bức xạ terahertz

Bức xạ terahertz là một vùng của phổ giữa vi ba và hồng ngoại xa. Cho đến gần đây, những nghiên cứu về bức xạ này mới được thực hiện nhiều, ứng dụng cho hình ảnh và thông tin liên lạc. Các nhà khoa học đã ứng dụng công nghệ terahertz cho quân đội, sóng tần số cao được dùng để vô hiệu hóa thiết bị điện tử của đối phương.[16]

Bức xạ hồng ngoại

Bài chi tiết: Bức xạ hồng ngoại

Phần hồng ngoại của phổ điện từ nằm trong dải tần 300 GHz (1 mm) tới 400 THz (750 nm). Nó có thể được chia thành 3 phần nhỏ:[2]

  • Hồng ngoại xa, từ 300 GHz (1 mm) tới 30 THz (10 μm). Phần thấp hơn của dải tần này có thể được gọi là vi ba. Bức xạ này thường bị hấp thụ bởi chế độ quay trong các phân tử khí, chuyển động phân tử trong chất lỏng và bởi phonon trong chất rắn. Nước trong khí quyển Trái Đất cũng hất thụ rất mạnh dải tần này. Tuy nhiên vẫn có một vài bước sóng nhất định trong dải tần này dùng cho thiên văn học. Dải bước sóng khoảng 200 μm tới vài mm thường được gọi là hạ-mm trong thiên văn học, nên hồng ngoại xa được đặt vào bước sóng dưới 200 μm.
  • Hồng ngoại giữa, từ 30 tới 120 THz (10 tới 2,5 μm). Các vật thể nóng (bức xạ vật thể đen) có thể bức xạ mạnh trong dải tần này. Nó bị hấp thụ bởi các dao động phân tử.
  • Hồng ngoại gần, từ 120 tới 400 THz (2.500 tới 750 nm). Quá trình vật lý có liên quan cho dải tần này tương tự như ánh sáng nhìn thấy.

Bức xạ nhìn thấy (ánh sáng)

Bài chi tiết: Phổ thấy được

Trên tần số hồng ngoại là ánh sáng nhìn thấy được. Đây là dải tần mà mặt trời và các ngôi sao khác phát ra bức xạ của húng và quang phổ và mắt người nhạy cảm nhất. Ánh sáng nhìn thấy được (và ánh sạng cận hồng ngoại) thường bị hấp thụ và phát ra bởi các điện tử trong phân tử và nguyên tử di chuyển từ một mức năng lượng này sang mức năng lượng khác. Ánh sáng nhìn thấy với mắt của chúng ta thực sự là một phần rất nhỏ của phổ điện từ. Một cầu vồng cho thấy phần nhìn thấy được của phổ điện từ; tia hồng ngoại nằm ở ngay dưới màu đỏ còn tia cực tím nằm ở ngoài màu tím.

Ánh sáng cực tím

Bài chi tiết: Tử ngoại
Số lượng thâm nhập của tia UV liên quan tới độ cao của tầng ozone của Trái Đất

Tiếp theo trong dải tần số là tia cực tím (UV). Bức sóng của tia UV ngắn hơn so với màu tim trong phổ nhìn thấy được nhưng dài hơn nhiều so với tia X.

Tia X

Bài chi tiết: Tia X

Sau UV là tới tia X, giống như dải trên của UV, nó cũng có tính ion hóa. Tuy nhiên, do năng lượng cao hơn, tia X có thể tác động tới vật chất nhờ hiệu ứng Compton.

Tia gamma

Bài chi tiết: Tia gamma

Tia gamma nằm sau tia X, do Paul Villard phát hiện vào năm 1900. Đây là các hạt photon nhiều năng lượng nhất. Dùng nhiều trong thiên văn học.

Tài liệu tham khảo

WikiPedia: Phổ_điện_từ http://www.acma.gov.au/webwr/radcomm/frequency_pla... http://www.ic.gc.ca/epic/site/smt-gst.nsf/vwapj/sp... http://books.google.com/?id=b519e10OPT0C&pg=PA58&d... http://books.google.com/books?id=n0RMHUQUUY4C http://hypertextbook.com/physics/electricity/em-sp... http://www.indiadaily.com/editorial/1803.asp http://unihedron.com/projects/spectrum/downloads/s... http://www.unwantedemissions.com http://hyperphysics.phy-astr.gsu.edu/hbase/ems3.ht... http://adsabs.harvard.edu/abs/2007ApJ...658L..33A